Ordovician ash geochemistry and the establishment of land plants
نویسندگان
چکیده
The colonization of the terrestrial environment by land plants transformed the planetary surface and its biota, and shifted the balance of Earth's biomass from the subsurface towards the surface. However there was a long delay between the formation of palaeosols (soils) on the land surface and the key stage of plant colonization. The record of palaeosols, and their colonization by fungi and lichens extends well back into the Precambrian. While these early soils provided a potential substrate, they were generally leached of nutrients as part of the weathering process. In contrast, volcanic ash falls provide a geochemically favourable substrate that is both nutrient-rich and has high water retention, making them good hosts to land plants. An anomalously extensive system of volcanic arcs generated unprecedented volumes of lava and volcanic ash (tuff) during the Ordovician. The earliest, mid-Ordovician, records of plant spores coincide with these widespread volcanic deposits, suggesting the possibility of a genetic relationship. The ash constituted a global environment of nutrient-laden, water-saturated soil that could be exploited to maximum advantage by the evolving anchoring systems of land plants. The rapid and pervasive inoculation of modern volcanic ash by plant spores, and symbiotic nitrogen-fixing fungi, suggests that the Ordovician ash must have received a substantial load of the earliest spores and their chemistry favoured plant development. In particular, high phosphorus levels in ash were favourable to plant growth. This may have allowed photosynthesizers to diversify and enlarge, and transform the surface of the planet.
منابع مشابه
Miospore assemblages from Late Ordovician (Katian-Hirnantian), Ghelli Formation, Alborz Mountain Range North-eastern Iran: Palaeophytogeographic and palaeoclimatic implications
Well-preserved miospore assemblages are recorded from the Late Ordovician (Katian-Hirnantian), Ghelli Formation in Pelmis-gorge at the north-eastern Alborz Mountain The palynomorphs were extracted from siliciclastic deposits which are well-dated by using of marine palynomorphs (acritarchs and chitinozoans). The encountered miospore assemblages consist of 14 genera (28 species: 26 cryptospores a...
متن کاملPliocene volcanic activity of the Harrat Ash-Sham, South of Syria: geochemistry and petrogenesis
The Cenozoic volcanic activity of the Harrat Ash Sham volcanic field in south of Syria is a part of the extensive magmatism that took place in the auxiliary extension faults along the Dead Sea Fault Zone from upper Eocene to Holocene. Pliocene volcanic rocks form an important part of igneous succession in Syrian Part of Harrat as Sham. These rocks vary from basalts flows to scoria. Pliocene bas...
متن کاملPetrography, Major and Trace Elemental Geochemistry of the Ordovician-Silurian Siliciclastics in North of Tabas Block, Central Iran: Implications for Provenance and Paleogeography
The upper part of Shirgesht (UPS) and lower part of Niur (LPN) formations (Ordovician-Silurian) consist of sandstone, shale and limestone, respectively. The petrography and geochemical analysis conducted to evaluate provenance of siliciclastic deposits in order to understand the paleogeography of Central Iran during the Early Paleozoic time. This study shows that quartz and K-feldspar are the m...
متن کاملThe timescale of early land plant evolution
Establishing the timescale of early land plant evolution is essential for testing hypotheses on the coevolution of land plants and Earth's System. The sparseness of early land plant megafossils and stratigraphic controls on their distribution make the fossil record an unreliable guide, leaving only the molecular clock. However, the application of molecular clock methodology is challenged by the...
متن کاملUltrastructure, morphology, and topology of Cambrian palynomorphs from the Lone Rock Formation, Wisconsin, USA
animal life on land. The current benchmark for evidence of plants on land is about 450,000,000 years ago (Late Ordovician). Tantalizing microscopic fossils of chemically resistant spore walls occur in land-derived rocks around the world, and predate this Late Ordovician age by over 50,000,000 years (Upper Cambrian) and possibly beyond. Figuring out what kinds of organisms (algae, primitive plan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 13 شماره
صفحات -
تاریخ انتشار 2012